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A new method of modeling friction forces that impede the motion of parts of  dynamic 
mechanical systems is described. Conventional methods in which the friction effect is 
assumed a constant force, or torque, in a direction opposite to the relative motion, are 
applicable only to those cases where applied forces are large in comparison to the fric- 
tion, and where there is little interest in system behavior close to the times of transitions 
through zero velocity. This article describes a new algorithm that provides accurate deter- 
mination of friction forces over a wide range of applied force and velocity conditions. 
The method avoids the simulation errors resulting from a finite integration interval used 
in connection with a conventional friction model, as is the case in many digital computer- 
based simulations. The new algorithm incorporates a predictive calculation based on ini- 
tial conditions of motion, externally applied forces, inertia, and integration step size. The 
predictive calculation in connection with an external integration process provides an accu- 
rate determination of both static and Coulomb friction forces and resulting motions in 
dynamic simulations. Accuracy of the results is improved over that obtained with conven- 
tional methods and a relatively large integration step size is permitted. A function block 
for incorporation in a specific simulation program is described. The general form of  the 
algorithm facilitates implementation with various programming languages such as Fortran 
or C, as well as with other simulation programs. 

1. Introduction of the large magnitude of axis friction, which equals roughly 
20 percent of the maximum available control effort, accurate 
modeling of friction effects is of critical importance. 

Recent interest in certain limit cycle oscillatory modes of 
operation of the 70-m antenna at DSS 14 has intensified the 
need for dynamic analysis and simulation of the axis servos. 
Limit cycle oscillations of phyiscal positioning systems, such 
as the antenna axis servos, result from nonlinearities associated 
with the position sensors and the control actuation devices. To 
support limit cycle investigations it is necessary to  model and 
simulate all the identified nonlinearities in the system. Because 

The basic physical laws of friction are discussed in numer- 
ous textbooks on mechanics and are briefly summarized here. 
First, the friction force between two bodies lies in the tangent 
plane of the contact point between the bodies. In the absence 
of relative motion, its magnitude is less than or equal to  the 
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product of the normal force between the bodies and a con- 
stant coefficient of static friction. Relative tangent plane 
motion between the bodies cannot commence until an exter- 
nally applied force exceeds the maximum magnitude of the 
friction force. Second, the Coulomb (as opposed to viscous) 
friction in the presence of relative motion between the two 
bodies, the friction force equals the product of the normal 
force and a coefficient of friction which may be different from 
the static coefficient and is in a direction opposite to the 
relative motion. 

In those applications where the normal force is constant 
and static friction forces are of no great concern, the friction 
force can be modeled by a constant force directed opposite 
the relative motion. This conventional model combined with 
an inertia is illustrated in transfer function form in Fig. 1 
where motion is restricted to  a single coordinate. The non- 
linear function block in Fig. 1 has three possible outputs: a 
unit amplitude with algebraic sign the same as that of the 
velocity; i ,  (when i is nonzero); and zero output for zero i .  
The constant of multiplication, F,, in the constant block is 
the product of the normal force and the friction coefficient. 
The net input force to the integration block is thus equal to 
the difference between the applied force and the friction 
force. 

By inference, the behavior of the model of Fig. 1 can be 
predicted for a number of simple cases. First, when the applied 
force is zero and the initial rate of motion is nonzero, the 
motion will decay to  zero under the influence of friction. 
Next, when the applied force exceeds the magnitude of the 
friction, the motion will accelerate in direct proportion to the 
difference between the applied and friction forces. For these 
two cases the model is seen to  provide a reasonable representa- 
tion of motion in the presence of friction. Examining next the 
case where the applied force is less in magnitude than the fric- 
tion and the initial rate is zero, the model is seen to deviate 
from the physical law because the modeled friction force is 
zero for the zero rate condition and an erroneous acceleration 
of the inertia results. 

Assuming the conventional model is evaluated using fixed 
step size numerical integration, the zero rate case above pro- 
duces a friction force which, because it exceeds the applied 
force, causes a rate reversal and leads to a sustained oscillatory 
process. While the amplitude of the rate excursions can be 
reduced through a reduction of integration step size, it will be 
seen that regardless of step size, the rate oscillates about a non- 
zero mean due to  the nonzero input applied force. A special 
computation is thus necessary to determine a step size suffi- 
ciently small to  control both the mean and amplitude of rate 
error. In the 70-m antenna axis servos the ratio of friction to 
inertia is 102 millidegreeslsecz (1.77 milliradians/sec2) for the 

azimuth axis and roughly 1.5 times that ratio for elevation. It 
can be shown that controlling the above rate errors to  less than 
0.1 mdeg/sec requires a step size of roughly 1 .O msec, which is 
unreasonably small and leads to excessive computation time 
and data storage for small computer-based simulations. 

II. Derivation of Equations for Modeling 
Friction 

From the foregoing discussion it is evident that accurate 
computer modeling of motion involving friction is based on 
knowledge of both the applied force and the velocity of the 
body influenced by the friction. The velocity determination 
is thus an essential adjunct of any friction model. When that 
velocity is determined by a finite step size integration process, 
the effects of friction reversals resulting from mid-integration- 
step zero crossings of velocity must be considered. The model- 
ing problem thus becomes the determination of net effective 
impulse such that the velocity change resulting from the finite 
step integration is reasonably accurate. 

The derivation of the equations for modeling friction is 
equally applicable to  translational or rotational systems. For 
rotation, the derivation assumes a slowly varying externally 
applied torque to  a constant inertia body in the presence of 
both static and invariant Coulomb friction and a known, 
fixed integration interval. The following conditions are con- 
sidered separately. 

(1) The applied torque is greater than the static friction 
torque and the inertia is initially at rest. 

(2) The applied torque and initial rate are such that the 
rate of motion will not reach zero within the next inte- 
gration interval. 

(3) The applied torque is less than the static friction and 
the initial rate of motion is such that the rate will reach 
zero withm the integration interval. 

(4) The applied torque is greater than the static friction 
and the initial rate of motion is such that the rate will 
reach zero within the integration interval. 

For Condition (1) above, the net torque acting on the inertia is 
simply the applied torque diminished in magnitude by the 
Coulomb friction torque. The effective friction torque, T f ,  is a 
constant with direction opposite to  the applied torque 

T = - F sign (Tap)  f 

for 8 = 0 and ITap I > F, where F, is the Coulomb friction tor- 
que, the sign function is unit amplitude with the algebraic sign 
of its argument, Tap is the applied torque, and b is the rate of 
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motion. The use of the Coulomb rather than the static value in 
this case is based on the assumption of an instantaneous transi- 
tion from the static to the sliding friction case. It will be seen 
that this assumption results in a minimum net torque equal to 
the difference between the static and Coulomb values. The 
resulting rate impulse can be adjusted to  better comply with 
known physical behavior by selection of the integration step 
size. 

In Condition (4) above, the applied torque is sufficient 
to  overcome the static friction level and reverse the rate within 
the integration interval. The actual friction torque in the 
physical system will thus reverse coincidental with the rate 
reversal. The effective friction torque is obtained by averaging 
the instantaneous friction torque over the integration interval. 
Thus 

The necessary condition for ( 2 )  above is determined from 
the equation of motion in the presence of friction 

where for rotational motion, J is the inertia moment, i ( t )  is 
the rate at time t ,  Tup is the applied torque and Tf, the fric- 
tion torque. Substituting -F, - sign(8) for the friction, T f ,  
solving for i(t,,) = 0, and dividing by the integration step 
size, t i ,  yields 

- -J i ( 0 )  ~- 
t .  Tap  - F, e sign [d(O)] (3) 

Negative values of t,,/ti imply a level of applied torque in 
excess of the friction and in the same direction as the rate. 
Positive values imply an applied torque either in a direction 
opposite the rate, or having a magnitude less than the fric- 
tion, or both. A negative or unity or greater than unity value 
of to,/ti is a necessary and sufficient condition for Condition 
( 2 )  above. The net torque in this case is the algebraic differ- 
ence between the applied and friction torques where the fric- 
tion is opposite in direction to  the rate. 

T f = -F, - sign ( 8 )  (4) 

for toc/ti < 0 or toc/ti 2 1. 

In Condition (3) above, the rate will reach zero at some 
time within the integration interval and the applied torque 
will be insufficient to  produce a rate in the reversed direction. 
Because the net torque acts on the inertia for the full interval, 
it must then decelerate the inertia to  precisely zero rate at the 
end of the interval. The required net torque and necessary con- 
ditions are thus 

- - J B  
T",, - - 

'i 

for ITupl > F, and 0 < t,,/ti < 1. 

If the initial rate is zero and Condition (1) above is not 
satisfied, the friction equals the applied torque and the net 
torque becomes zero. Further, since Conditions (1) through 
(4) encompass all possible torque and rate conditions of 
interest, Eqs. (1) through (6) together with their conditions of 
applicability form the basis for defining effective friction 
torque and the net torque. 

111. Application to Practice 
A function block incorporating the logic and equalities of 

Eqs. (1) through (6) was developed for incorporation into a 
dynamic simulation model of the 70-m azimuth axis servo 
using MATRIXx, a copyrighted software program from Inte- 
grated Systems, Inc. for simulation of dynamic systems. The 
friction model utilizes four general equation building blocks 
and one standard function block from the MATRIXx utilities. 
Because the simulation program does not facilitate conditional 
branching in function blocks, it was necessary to structure the 
algorithm to employ eight logical variables whose one/zero 
values define Conditions (1) through (4) discussed in relation 
to  Eqs. (1) through (6). The logical variables are then used in 
one equation for the net torque. 

The algorithm inputs are U1, applied torque, U2, output 
rate from an adjoint integration process, and U3, a unit vari- 
able with the algebraic sign of U2.  The output is Y22, the 
net torque to the integrator. Parameters are the static and 
Coulomb friction levels, F, and F,, the inertia moment, J ,  
and the integration interval ti. 

for ITapl < F, and 0 < tOc/ti < 1. 
The computations are grouped in function blocks as shown 

in Fig. 2 to  avoid intermixing relational and arithmetic opera- 
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tors. The logical assignments use the convention where the 
lefthand variable is true (one) if the righthand condition is 
satisified, and false (zero) otherwise. A listing of variables and 
equations is provided below. 

Friction logical variables 

YY1 = 111 >Fc 

YY2 = 111 <-F, 

YY3  = u 2 > 0  

YY4  = u2< 0 

YY5 = U1> F, and not (YY3 or YY4)  

YY6 = U1< -F, and not (YY3 or YY4)  

YY7 = Y Y l  or YY2 

Numeric variables, YN1 = critical torque, YN2 = t , , / t i  

J 
I ti 

YNl = U2- 

Logical variable 

YYlO = YN2>OandYN2<1 
I 

Algebraic friction equation 

Y21 = (2 YN2 - 1 )  F, 

Y22 = [ YY3 (Ul - Y21) + YY4  (U1 + Y21)] YY7 * YYlO 

+ [ YY3 (Ul - F,) t YY4  (U1 + Fc)]  ( 1  - YY10) 

t YY5 (U1 -Fs) t YY6 (U1 t F,) 

- ( 1  - YY7)  YYlO * YN1 

IV. Simulation Test Results 
Performance of the conventional friction model of Fig. 1 

and the new model of Fig. 2 was compared in a dynamic simu- 
lation of the 70-m azimuth axis position servo. To simplify the 
simulation results, the flexible dynamics of the antenna struc- 
ture were replaced with equivalent rigid-body parameters, 
thereby reducing the dynamic system to eighth order. The sim- 
ulations are otherwise representative of actual system perform- 
ance. The system excitation was a small ( 1  .O millidegree) posi- 
tion step transient. The control torque, measured in units of 
psi of hydraulic differential pressure, and axis rate in milli- 
degrees/sec were recorded for comparison. The simulation was 
run for a total time of 5.0 sec with a 10 msec integration step 
size for both friction models. Results for the conventional 
model are shown in Fig. 3 and for the new model in Fig. 4. 

The position loop dynamics simulated are such that the 
control torque changes slowly in response to the small tran- 
sient applied here. The oscillatory behavior of the conventional 
friction model is evident during the intervals when the applied 
torque is less than the friction. The nonzero mean rate during 
these intervals is erroneous as the rate should be zero until the 
applied torque exceeds the 400 psi friction threshold. The 
irregularities on the rising and descending portions of the tor- 
que graph appear to  be the spurious result of the oscillations 
coupling back through the rate loop. 

The new friction model produces smooth torque transitions 
and zero rate in the intervals between the static friction levels 
(425 psi) in conformance with expectations based on the 
physical laws of friction. The ripple in the rate result is most 
likely the 7.0-Hz mode of the gear actuator stiffness included 
in the model. 

V. Summary and Conclusions 
An improved method for modeling dynamic motion in the 

presence of friction has been described. Simulation test results 
demonstrated that the anomalies of more conventional meth- 
ods are corrected without increasing computer processing 
time. While the new algorithm is based on an external Euler 
integration, it should be capable of extension to incorporate a 
trapezoid- or possibly a polynomial-based integration method. 
The increased complexity of the predictive calculation with a 
polynomial integration may, however, negate any advantage 
to be gained with the more efficient integration methods. 
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Fig. 1. Conventional friction model for single coordinate motion. 
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Fig. 2. Simulation function block implementation of the new algorithm. 
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Fig. 3. Conventional friction simulation algorithm: (a) applied torque and (b) output rate. 
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Fig. 4. New friction simulation algorithm: (a) applied torque and (b) output rate. 
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